

Stephanie Crossley executive director m +61 498 641 687 e stephanie@crossleytp.com.au crossleytp.com.au

School Road, Forbes Transport Impact Assessment

Rev B

Quality Assurance

Project Details

Project	School Road, Forbes – Transport Impact Assessment			
Project Reference	P2231 Contract Number			
Client	Allera ABN			
Prepared by	Crossley Transport Planning	ABN	18 632 881 602	

Document Revision Register

Revision	Status	Prepared By	Checked By	Approved By
A	Final	Kevin Nathaniel	Kirk Martinez	Kirk Martinez
		25/09/2023	25/09/2023	25/09/2023
В	Final (update traffic impacts)	Kerry Tran	Kirk Martinez	Kirk Martinez
		27/09/2023	27/09/2023	27/09/2023

Disclaimer

This report (including any enclosures and attachments) has been prepared by Crossley Transport Planning Pty Ltd on the request of Allera The report is for the exclusive use and benefit of Allera and solely for the purpose set out in the engagement documentation. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report.

The information, statements, statistics and commentary (together the 'Information') contained in this Report have been prepared by Crossley Transport Planning from publicly available material, from discussions with Stakeholders and data provided by the client. Crossley Transport Planning does not express an opinion on the accuracy or completeness of the information provided, the assumptions made by the parties that provided the information or any conclusions reached by those parties.

Crossley have based this Report on information received or obtained on the basis that such information is accurate and complete. The information contained in this Report has not been subject to an audit.

Table of Contents

Qua	lity As	surance	2
1	Introc	luction	4
	1.1	Project background	4
	1.2	Scope	4
	1.3	Study Area	4
	1.4	Literature Review	5
	1.5	Purpose of the report	7
2	Existi	ng Site Condition	8
	2.1	Road Network	8
	2.2	Public Transport	9
	2.3	Cycling and Walking	10
	2.4	Crash Analysis	11
	2.5	Traffic Counts	13
	2.6	SIDRA Outputs Criteria	15
	2.7	Intersection Analysis and Results (Current Condition, 2023)	17
3	Devel	opment Scheme	18
	3.1	Vehicular Access	19
	3.2	Proposed Internal Road Network	19
	3.3	Phasing of Development	.20
	3.4	Servicing	.20
4	Traffic	c Impacts	21
	4.1	Traffic Generation Rates	21
	4.2	Traffic Distribution and Assumptions	.22
	4.3	Phase 1 Intersection Analysis (year 2025)	
	4.4	Phase 2 (50% complete) Intersection Analysis (year 2030)	.25
	4.5	Phase 3 (100% completion) Intersection Analysis (year 2035)	.27
5	Concl	usion	.30
App	endix	A Concept Plans	31
Арр	endix	B Traffic Surveys	.32
Арр	endix	C SIDRA Outputs	.33

1 Introduction

1.1 Project background

Allera is proposing a rezoning of 92 hectares of land within the Forbes Shire Council to construct 742 residential dwellings and other mixed use developments to support the housing needs in Forbes.

1.2 Scope

Crossley Transport Planning (CTP) has been commissioned by Allera to carry out a Transport Impact Assessment (TIA) to determine the potential impacts of the proposed development on the operation and safety of the surrounding road network. The outcomes of the TIA will be used in support of a planning proposal for the site, which will be assessed by Forbes Shire Council (Council). The study addresses the key topics related to traffic and transport impacts typically associated with the proposed development to include:

- Existing transport conditions surrounding the site
- Strategic planning context
- Traffic generating characteristics of the proposed development
- Transport impact of the planning proposal on the surrounding road network.

1.3 Study Area

The proposed development (subject site) has a total area of approximately 920,000 sqm and is located on Lots 375, 376, 386, 387, 388, 389, 830, 831, and 1273 in DP 750158. The subject site has been zoned as RU1 (Primary Production), R5 (Large Lot Residential), and RE1 (Public Recreation).

Figure 1-1 and Figure 1-2 illustrates the location of the site in aerial view.

Figure 1-1: Aerial View of the Subject Site (Source: Nearmap, dated 19th March 2023)

Figure 1-2 Road network surrounding the subject site (Source: Google Map)

1.4 Literature Review

Local policies, strategies and plans frame the planning intent and the aspired outcome for the region. A review of policies has been undertaken to help frame and align opportunity generation from this project with the vision for the region.

1.4.1 Forbes Housing Strategy 2021-2041

This strategy outlined the trend, opportunity, and issues of Forbes Shire to grow and provide the supply for the future housing demand in the existing residential area and the proposed urban expansion area.

Currently, there are 10,023 people living in Forbes Shire with 80% of the population residing in the city center. It is projected that the population will rise to 13,231 in 2041 with 1,819 new housing needs.

To address future housing supply, Council has outlined a priority for the development of serviced residential land estates. They have estimated that a reserve of serviced residential zoned land of approximately 238 hectares needs to be made available in response to any potential housing demands.

Furthermore, it is approximated that more than 75% of the residents travel by private motor vehicle. To accommodate the increase in traffic as a result of the increase In population, it is necessary to assess the capacity of the local road network such that adequate accessibility to the residents is maintained/provided.

Council have noted that an integrated planning approach should be adopted to assess the urban road network to properly manage urban growth and traffic-related

issues. This report will aim to assess the performance of the roads and intersections around the proposed residential development in response to the urban release program.

1.4.2 The Forbes Local Strategic Planning Statement (LSPS) 2040

This strategic planning provides the information of planning priorities of Forbes Shire area for the future. Based on the Department of Planning, Infrastructure and Environment, it is estimated that the area will experience a growth of 5% in 20 years.

The key objectives of The Forbes Local Strategic Planning Statement (LSPS) 2040 is as follows:

- Accommodating future growth and community needs of the area.
- Conservation of environment, heritage and local character of the area.
- Providing support to boost the diverse economy and industry of the area.
- Linking the local's strategic vision with the region and state vision to achieve the best outcomes for the area.
- Ensuring land zonings will accommodate the investment and growth in the Shire expected from infrastructure upgrades

This assessment will aim to assess the traffic impacts of the rezoning of 92 hectares of land within the Forbes Shire Council to construct 742 residential dwellings and other land use developments, as well as providing recommendations to support these key objectives for the desired growth of the northern Forbes township.

1.4.3 Forbes Community Strategic Plan (CSP) 2018-2028

The Forbes Community Strategic Plan is a document that outlines the collective vision, goals, and the community priorities for a ten-year period. This document is prepared in accordance with the principles of social justice and sustainability.

The Forbes Community Strategic Plan is built upon six key directions:

- Community and Culture
- Local Economy
- Natural Environment
- Rural and Urban Land use
- Infrastructure and Services
- Government and Representation

The findings of the document outlined that there is a need to identify new residential subdivisions and industrial precincts to accommodate future population growth while maintaining local agricultural land.

1.5 Purpose of the report

The purpose of this report is to present the likely traffic and transport impacts of the proposed development, and if any traffic mitigation strategies are required. The report has the following structure:

- Section 1: Introduction and a brief description of the proposal
- Section 2: Description of the existing conditions surrounding the site
- Section 3: Description of the proposed development
- Section 4: Determination of the traffic activity associated with the proposed development and assessment of the surrounding road network
- Section 5: Conclusion

2 Existing Site Condition

2.1 Road Network

The existing road network surrounding the subject site is comprised of the following roads (refer to **Figure 2-1**):

- School Road serves as a local road which provides access to the surrounding residential areas. The road runs east-west along the northern boundary of the site and is governed by a speed limit of 50 km/hr.
- **Edward Street** serves as the main road which connects the site and the surrounding area and offers a direct connection to the school's vicinity. The road runs north-south and is also governed by a speed limit of 50 km/hr.
- **The Bogan Way** serves as a significant connector road, intersecting with other key roads in the area. It serves as a vital link to the local centre. The road runs northwest-southeast and is governed by a speed limit of 80 km/hr.
- Farnell Street serves as a vital road that provides access to the surrounding residential areas. The road runs north-south and is governed by a speed limit of 50 km/hr.

Figure 2-1: Aerial View of the Surrounding Roads Subject to the Site (Source: Nearmap)

2.2 Public Transport

The nearest bus stop is located at the southern boundary of the subject site, along Farnell Street. **Table 2-1** summarises the bus routes and frequencies of each bus routes within the area. **Figure 2-2** shows the existing bus stop locations near the subject site.

Route	Туре	Destinations	Frequency During Weekday (AM)	Frequency During Weekday (PM)
586	Public Bus	Forbes Town Centre to Forbes Dawson Street via Edward Street	Every 2 hours	Every 2 hours
587	Public Bus	Forbes Town Centre to Forbes Alder Street via Calarie Road	Every 1 hour	Every 1 hour

Table 2-1 Bus Routes and Frequencies

Figure 2-2 Existing Bus Stop Locations

2.3 Cycling and Walking

There are currently no pedestrian footpaths provided near the subject site. A bicycle lane is provided along Calarie Street, but no bicycle lane is provided to the site or along the boundary of the site. The walking and cycling infrastructure available around the site are shown in **Figure 2-3**.

Figure 2-3 Bicycle network around the proposed residential development (TfNSW Open Data)

Following that, Forbes Shire Council is currently installing a wide shared footpath on Bogan Street and Edward Street, connecting the town centre and the residential area. The shared footpath design is shown in **Figure 2-4**

Figure 2-4 Shared Footpath Design at the Bogan Way and Edward Street (Source: Forbes Shire Council)

2.4 Crash Analysis

The crash history data within a 2 kilometres radius of the subject site was sourced from Transport for NSW (TfNSW) for the period 2017 to 2021. A total of 20 crashes were reported around the subject site during the 5-year period and are shown in **Figure 2-5**. Majority of the crashes involved are mainly moderate injury crashes which occurred at intersections located in the residential areas.

Two crashes occurred at the site boundary with no casualty. One of the crashes resulted in a moderate injury crash which occurred in 2019 along Edward Street within an 80km/hr speed limit. It was during daytime with dry conditions, and involved a light truck.

The other crash was a non-casualty crash that took place in 2020 along Farnell Street within an 50km/hr speed limit. It occurred at night with dry conditions involving a light truck going off the carriageway.

These crashes are not indicative of any inherent safety issue associated with the subject site.

Figure 2-5 Crash history around proposed residential development

2.5 Traffic Counts

Traffic counts of 3 intersections within proximity of the subject site (refer to Figure 2-6) were undertaken on Tuesday, 23 June 2023 to assess the traffic impacts and form inputs into the traffic modelling assessment. These three survey intersections include:

- Johnson Street / Barton Street / Farnell Street
- The Bogan Way / Edward Street
- Farnell Street / Wyndham Avenue

The three intersection locations were consulted and confirmed with the Forbes Shire Council prior to conducting the traffic count.

Figure 2-6 Traffic survey locations

The morning and evening peak hours for each of the respective intersections are summarised in **Table 2-2.** The raw traffic survey data are provided in **Appendix B**. *Table 2-2 Traffic peak hour for AM and PM period*

Intersection	AM Peak Hour	PM Peak Hour
Johnson Street / Barton Street	8:15 – 9:15	15:30 – 16:30
The Bogan Way / Edward Street	8:15 – 9:15	16:00 – 17:00
Farnell Street / Wyndham Avenue	8:15 – 9:15	15:00 – 16:00

Note: To conduct the traffic modeling assessment during the evening peak periods, we have designated the timeframe from 16:00 to 17:00 for analysis at the three intersections.

Figure 2-7, **Figure 2-8**, and **Figure 2-9** present the total vehicle movements at each of the surveyed intersections for the AM and PM peak hours respectively.

AM Peak Hour

PM Peak Hour

Figure 2-7 Intersection movement counts at Johnson Street and Barton Street

PM Peak Hour

Figure 2-8 Intersection movement counts at The Bogan Way and Edward Street

AM Peak Hour

PM Peak Hour

Figure 2-9 Intersection movement counts at Farnell Street and Wyndham Avenue

2.6 SIDRA Outputs Criteria

The assessment of the intersection was undertaken for the morning and afternoon peak periods using SIDRA INTERSECTION 9.1 (SIDRA), developed by SIDRA Solutions. SIDRA was the selected tool, as it is the most suitable software package for undertaking micro-analytical modelling. It provides information about the capacity of the intersection in terms of a range of parameters. A definition of these parameters are as follows:

- Level of Service (LOS): is the qualitative measure describing operational conditions within a traffic stream and the perception by motorists and/or passengers. **Table 2-3** shows the level of service criteria for a various intersection treatments, extracted from the Guide to Traffic Generating Developments.
- Average Delay: is the average of all travel time delays for vehicles through the intersection.
- Degree of saturation: The ratio of arrival (demand) flow rate to capacity during a given flow period.

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way & Stop Signs
A	< 15 seconds	Good operation	Good operation
в	15 to 28 seconds	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
с	29 to 43 seconds	Satisfactory	Satisfactory, but accident study required
D	43 to 56 seconds	Operating Near Capacity	Near capacity and accident study required
Е	57 to 70 seconds	At capacity; at signals incidents will cause excessive delays Roundabouts require other control mode	At capacity, requires other control mode
F	> 70 seconds	The amount of traffic approaching the point under consideration exceeds that which can pass it.	The amount of traffic approaching the point under consideration exceeds that which can pass it.

Table 2-3 Level of Service (LoS) for all types of intersections

Source: Traffic Modelling Guidelines 2013 (RTA)

The following provides a description of each level of service category:

Level of Service A (LoS A):

LoS A represents the best operating conditions at an intersection. It indicates minimal delays, short queues, and efficient traffic flow. In terms of SIDRA modelling, intersections assigned to LoS A typically exhibit high capacities, low control delay, and short queue lengths. Vehicles can move through the intersection smoothly with minimal disruptions.

Level of Service B (LoS B):

LoS B indicates a high level of operational efficiency, but with slightly more congestion compared to LoS A. The delays and queues at the intersection are still relatively low, but there may be a slight decrease in traffic flow compared to LoS A. Intersections assigned to LoS B in SIDRA modelling generally maintain good capacities and reasonably low delays, ensuring acceptable levels of service for motorists.

Level of Service C (LoS C):

LoS C represents an intermediate level of service, where traffic congestion and delays begin to increase. Intersections assigned to LoS C may experience moderate queues and slightly longer delays compared to LoS A and B. Traffic flow is still relatively smooth, but there might be occasional interruptions and minor disruptions. The capacity of the intersection is typically lower than LoS A and B, indicating a moderately congested condition.

Level of Service D (LoS D):

LoS D indicates a moderate level of congestion and delays at an intersection. Intersections assigned to LoS D experience significant queues and delays during peak hours. Traffic flow is slower, and vehicles may have to wait for multiple signal cycles before being able to proceed through the intersection. Capacity is noticeably reduced, leading to longer delays and increased travel times.

Level of Service E (LoS E):

LoS E represents a high level of congestion and delays. Intersections assigned to LoS E face severe queues, lengthy delays, and significantly reduced traffic flow. Vehicles may experience multiple cycles of waiting before getting a chance to proceed, leading to frustration and longer travel times. The capacity of the intersection is considerably compromised, resulting in poor service quality.

Level of Service F (LoS F):

LoS F represents the worst operating conditions at an intersection. It indicates extreme congestion, long queues, and extensive delays. Intersections assigned to LoS F suffer from severe traffic congestion, where traffic may come to a standstill or move at an extremely slow pace. Vehicles experience extensive waiting times, resulting in significantly increased travel durations. The capacity of the intersection is overwhelmed, leading to extremely poor service quality.

2.7 Intersection Analysis and Results (Current Condition, 2023)

The key intersections has been assessed using SIDRA intersection modelling, focusing on the existing conditions. A summary of the intersections current operation is presented in **Table 2-4** and **Table 2-5**, while detailed results can be found in **Appendix C**.

Intersection	Average Delay (sec)	Level of Service (LoS)
The Bogan Way / Edward Street	7.1	А
Johnson Street / Barton Street / Farnell Street	11.9	А
Farnell Street / Wyndham Avenue	5.7	А

Table 2-4 Existing Year 2023 AM Peak Results

Table 2-5 Existing Year 2023 PM Peak Results

Intersection	Average Delay (sec)	Level of Service (LoS)
The Bogan Way / Edward Street	7.8	А
Johnson Street / Barton Street / Farnell Street	13.5	А
Farnell Street / Wyndham Avenue	5.7	А

Based on the SIDRA intersection results shown in **Table 2-4** and **Table 2-5**, the intersections surrounding the proposed subject site performs at a Level of Service A with ample capacity to accommodate for future traffic volumes.

3 Development Scheme

Allera is planning to rezone a 92-hectare land to facilitate the construction of 742 residential dwellings and other land use developments on the subject site. **Figure 3-1** presents the proposed masterplan for the subject site.

Figure 3-1 Proposed development of the subject site (Source: Hatch)

The proposed land use breakdown of the subject site is shown in **Table 3-1**. The land use details are intended for planning purposes only. It may subject to change.

Land Use	Details	
Residential	742 residential dwellings	
Small Supermarket	850m²	
Specialty Shops	600m ²	
Allied Health	850m ²	
Childcare	100 place (700m²)	
Gym	950m ²	

Table 3-1 Proposed land use breakdown for the subject site

3.1 Vehicular Access

Proposed vehicular access to the subject site will be provided by key road Edwards Street and Farnell Street. At the early Phase, the main access will be via Morton Street.

3.2 Proposed Internal Road Network

The internal road network of the subject site will be provided via local and collector roads. The collector road will be serviced by a number of local roads which will distribute traffic to the local street network for residential access and other developments within the subject site.

The road network within the subject site would be developed as part of a sitespecific Development Control Plan. This road network would be consistent with the relevant standards.

Traffic Volume (AADT)	Servicing No. of Lots	Hierarchy	Road Reserve Widths (min)	Vehicle Pavement Width (m)	Footpath Width (m)	Design Speed (Km/hr)
0-80	0 - 8	Minor Cul- de-sac	17	8	4.5	40
80-300	8 - 30	Cul-de-sac	18	9	4.5	60
300-800	30 - 80	Local Road	18	9	4.5	60
800-1500	80 - 150	Minor collector	20	11.0	4.5	60
1500-5000	> 150	Major Collector	22	13	4.5	70
5000+	>5,000	Distributor	22	13	4.5	70

Table 3-2 Council road carriageway requirements

3.3 Phasing of Development

Given the size of the proposed development, the construction of the subject site are likely to occur in the following three phases (subject to market demand):

- Phase 1 (2025): 30 residential dwellings.
- Phase 2, 50% complete (2030): 350 residential dwellings.
- Phase 3, 100% complete (2035): development of the full site to include 742 dwellings, small supermarket, specialty shops, allied health, childcare centre, and gym.

3.4 Servicing

Refuse collection will occur from the street by Council's collection service, which is typically a 9.9m rigid truck.

The design of the local roadways in this area will be suitable for on-street parking of service and delivery vehicles. The internal road system will be planned to accommodate the circulation of a 9.9m truck, and adhering to the Council's road width standards.

4Traffic Impacts

The traffic impacts are assessed for four different scenarios:

- **Base case**: Assessment of the existing traffic volumes, based on the survey data (refer to **Section 2.7**).
- **Phase 1**: The future case scenario (2025) assesses the future traffic for the subject site with consideration of 30 residential dwellings. In addition, a background traffic growth rate is assumed to be 1.8 percent per annum.
- **Phase 2**: The future and development case scenario projects the overall traffic volumes in 2030, accounting for the additional traffic generated by the residential dwellings and other mixed use developments, which is expected to be approximately 50% completed.
- **Phase 3**: The future and development case scenario projects the total traffic for the year 2035, considering the additional traffic generated by the fully developed site.

4.1 Traffic Generation Rates

The 'Guide to Traffic Generating Development Version 2.2 (2002)' and 'Technical Direction Updated traffic surveys (TDT 2013/04a)' by RTA (RMS) outlines traffic generation rates for various development types.

In this assessment, CrossleyTP have applied the traffic generation rates as specified in these guidelines. The anticipated traffic generation for the development can be found in **Table 4-1**.

Land use	Area / Dwellings / Place	Traffic gene Morning	eration rate Evening	Source
Residential	742 dwellings	0.85 trip pe	er dwelling	TDT 2013/04a
Small Supermarket	850m ²	12.3 trips per 100m² GLFA*		Guide to Traffic Generating Developments (2002)
Specialty Shops	600m²	This traffic generation will be included as part of the small supermarket rates. As noted in the 'Guide to Traffic Generating Developments 2022' these stores are grouped as they tend to not be primary attractors to the centre.		Guide to Traffic Generating Developments (2002)
Allied Health	850m²	10 trips per 100m² GFA	10 trips per 100m² GFA	Guide to Traffic Generating Developments (2002)

Table 4-1: Weekday peak (traffic generation rates)

Land use	Area / Dwellings / Place	Traffic generation rate Morning Evening		Source
Childcare Centre	700m²/ 100 place	0.8 trip per child	0.7 trip per child	Guide to Traffic Generating Developments (2002)
Gym	950m²	3 trips per 100m²	3 trips per 100m²	Guide to Traffic Generating Developments (2002)

Note: *Small supermarkets rates have not been identified in the Guide to Traffic Generating Developments (2002) or TDT 2013/04a. For this assessment the retail (shopping centres) traffic generation rate will be taken into consideration.

4.2 Traffic Distribution and Assumptions

Considering the characteristic trip types for the numerous land uses proposed for the subject site, the following assumptions have been considered for the trip distribution and assignment:

- Assumptions made for the residential dwellings:
 - 80/20 ratio for inbound and outbound morning trip distribution.
 - $_{\odot}$ 20/80 ratio for inbound and outbound afternoon trip distribution.
 - o 30 dwellings will be constructed at the starting year.
 - 60 new dwellings will be constructed annually until 2030 (50% completion).
 - 80 new dwellings will be constructed annually from 2030 to final completion.
- Retail uses (small supermarket and specialty shops) within the neighbourhood centre is assumed to generate 50/50 ratio of external and internal trips.
- Community and recreational uses (i.e. gym, childcare, and allied health) are assumed to generate 50/50 ratio of external and internal trips.
- Based on Journey to Work and Traffic Count data, the trip distribution are assumed as below:
 - AM Peak: 60% of the traffic will come from the north, 16% from the south, 22% from the east, and 2% from the west.
 - PM Peak: 58% of the traffic will head north, 17% to the south, 19% to the east, and 6% to the west.
- The projected annual background traffic growth rate of 1.8% is calculated using a pro rata method with data from the Travel Volume Viewer.

4.3 Phase 1 Intersection Analysis (year 2025)

Phase 1 is assessed based on the existing traffic, forecasting the background traffic up to the year 2025 and 30 residentials dwellings. It is assumed that the annual growth of traffic is 1.8 percent.

4.3.1 Traffic Generation (scenario 1)

Based on the assumptions specified, a summary of the traffic generated by the proposed development for Phase 1 is outlined in **Table 4-1**.

Table 4-2: Weekday peak (traffic generation)

Land use	Area / Dwellings / Place	Traffic generation			
		Morning	Evening		
Residential	30 dwellings	25 vehicles	25 vehicles		
Small Supermarket					
Specialty Shops					
Allied Health	Not applicable (developments has not entered the construction phase)				
Childcare Centre					
Gym					

Figure 4-1 and **Figure 4-2** provides the morning and evening peak hour total vehicle movements for Phase 1 (includes proposed development, forecast background growth etc).

Figure 4-1 Phase 1 – Vehicle movements (morning peak) from the proposed development

Figure 4-2 Phase 1 – Vehicle movements (evening) from the proposed development

4.3.2 Intersection analysis results (Phase 1)

Table 4-3 summarises the results of the Phase 1 scenario.

Table 4-3 SIDRA output results – Phase 1 (morning and evening peak periods)

	Morning		Evening	
Intersection	Average Delay (sec)	Level of Service (LoS)	Average Delay (sec)	Level of Service (LoS)
The Bogan Way / Edward Street	8.0	А	7.9	А
Johnson Street / Barton Street / Farnell Street	11.4	А	13.7	А
Farnell Street / Wyndham Avenue	5.7	А	5.7	А

Based on the SIDRA intersection modelling results (refer to **Table 4-3**), the intersections of The Bogan Way/Edward Street, Johnson Street/Barton Street/Farnell Street and Farnell Street/Wyndham Avenue performs at a Level of Service A with ample capacity to accommodate for future traffic volumes.

4.4 Phase 2 (50% complete) Intersection Analysis (year 2030)

Phase 2 is assessed based on the existing traffic, forecasting the background traffic up to the year 2030, 350 residentials dwellings and other developments. It is assumed that the annual growth of traffic is 1.8 percent.

4.4.1 Traffic Generation (scenario 2)

Based on the assumptions specified, a summary of the traffic generated by the proposed development for Phase 2 is outlined in **Table 4-4**.

Land use	Area / Dwellings / Place	Vehicle traffic generation		
		Morning	Evening	
Residential	350 dwellings	298 vehicles	298 vehicles	
Small Supermarket	850 m ²	 Not applicable (development has not entered on the second s		
Specialty Shops	600 m ²			
Allied Health	850 m ²			
Childcare Centre	700 m² / 100 children			
Gym	950 m ²			

Table 4-4 Weekday peak (traffic generation)

Figure 4-3 and **Figure 4-4** provides the morning and evening peak hour total vehicle movements for Phase 2 (includes proposed development, forecast background growth etc).

Figure 4-3 Phase 2 – Vehicle movements (morning peak) from the proposed development

Figure 4-4 Phase 2 – Vehicle movements (evening) from the proposed development

4.4.2 Intersection analysis results (Phase 2)

Table 4-5 summarises the intersection performance results of Phase 2.

Table 4-5 SIDRA output results – Phase 2 (morning and evening peak periods)

	Morning		Evening		
Intersection	Average Delay (sec)	Level of Service (LoS)	Average Delay (sec)	Level of Service (LoS)	
The Bogan Way / Edward Street	8.0	А	8.1	А	
Johnson Street / Barton Street / Farnell Street	17.7	В	19.8	В	
Farnell Street / Wyndham Avenue	6.4	А	5.9	А	

The priority-controlled intersection (give-way sign control) of The Bogan Way and Edward Street has a maximum average delay of 8.0 seconds for the worst performing movement, and the intersection operating at a LoS A. Johnson Street, Barton Street, and Farnell Street which is also a priority-controlled intersection (give-way sign control) which has increased to a LoS B for both morning and evening peak periods.

Farnell Street and Wyndham Avenue is also a priority-controlled intersection, which has a maximum average delay of 6.4 seconds and continues to perform at LoS A. Based on the SIDRA intersection modelling results (refer to Section **Table 4-5**), these intersections performs at a LoS A or B, with ample capacity to accommodate for future traffic volumes.

4.5 Phase 3 (100% completion) Intersection Analysis (year 2035)

Phase 3 is assessed based on the existing traffic, forecasting the background traffic up to the year 2035 with the site fully completed. It is assumed that the annual growth of traffic is 1.8 percent.

4.5.1 Traffic Generation (scenario 3)

Based on the assumptions specified in **Section 4.2**, a summary of the traffic generated by the proposed development for Phase 3 is outlined in **Table 4-6**. *Table 4-6 Weekday peak (traffic generation rates)*

Land use	Area / Dwellings / Place	Traffic generation		
Land use	Area / Dweilings / Place	Morning	Evening	
Residential	742 dwellings	631	631	
Small Supermarket	850m ²	57		
Specialty Shops	600m ²	53	53	
Allied Health	850m²	43	43	
Childcare Centre	700m² / 100 children	40	35	
Gym	950m ²	15	15	
TOTAL		782 vehicles	777 vehicles	

Figure 4-5 and **Figure 4-6** provides the morning and evening peak hour total vehicle movements for phase 3 (includes the proposed site being full developed, forecast background growth etc).

Figure 4-5 Phase 3 – Vehicle movements (morning peak) from the proposed development

Figure 4-6 Phase 3 – Vehicle movements (evening) from the proposed development

4.5.2 Intersection analysis results (Phase 3)

Table 4-7 summarises the intersection performance results of Phase 3.

Table 4-7 SIDRA output results – Phase 3 (morning and evening peak periods)

	Morning		Evening	
Intersection	Average Delay (sec)	Level of Service (LoS)	Average Delay (sec)	Level of Service (LoS)
The Bogan Way / Edward Street	9.2	А	9.8	А
Johnson Street / Barton Street / Farnell Street	46.2	D	30.3	С
Farnell Street / Wyndham Avenue	8.5	А	6.3	А

Based on the SIDRA intersection modelling results (refer to **Table 4-7**), the intersection of The Bogan Way/Edward Street and Farnell Street/Wyndham Avenue performs at a LoS A during the morning and evening peak periods, with the site being fully developed.

The intersection of Johnson Street, Barton Street, and Farnell Street operates at a LoS D in the morning peak period and a LoS C during the evening peak period. These Levels of Service are deemed acceptable, indicating that ample capacity remains available for accommodating potential increases in traffic volume. It is worth noting that a Level of Service F signifies that the intersection is operating at maximum capacity.

5 Conclusion

Crossley Transport Planning has reviewed the traffic and transport matters for the proposed development at subject site located at School Road Forbes. Based on the findings of this assessment the following can be concluded:

- The proposal would seek to provide approximately 742 new residential dwellings and other land use developments within Forbes.
- The proposed road network would be subject to further design work. A sitespecific Development Control Plan will be developed in consultation with Council prior to any future Development Application and will accord with all relevant standards.
- The provisions for vehicle access and servicing will be satisfactory.
- There will be no adverse traffic implications.
- Based on the SIDRA traffic modelling assessment the key intersections within vicinity of the subject site indicate that the additional traffic generated for the proposed development would have a negligible impact on the road network and intersections.

Taking into account the information presented in this report and the conclusions outlined above, we believe that the planning proposal for the site is justifiable from a traffic and transport planning perspective.

Appendix A Concept Plans

P2231 – School Road, Forbes – Transport Impact Assessment Rev B

Forbes View Concept Master Plan Forbes Shire Council ΗΔΤCΗ FOR DISCUSSION
 D
 DRAWN
 APPR'D
 JOBE CODE
 SERVICE
 DOC.TYPE
 DRAW NO.
 REV.

 MD
 MD
 H-371649
 Concept Design
 DWG
 001
 A
 SIZE A0_1:2000 230922

DISCLAIMER: ISSUED FOR DESIGN INTENT ONLY. ALL AREAS AND DIMENSIONS ARE SUBJECT TO DETAIL DESIGN AND SURVEY

Appendix B Traffic Surveys

P2231 – School Road, Forbes – Transport Impact Assessment Rev B

crossleytp.com.au 32

Appendix C SIDRA Outputs

V Site: 01 [01 (AM BASE) 8:15-9:15AM - BOG_EDW (Site

Folder: AM Peak - (Base case))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

01 (AM BASE) 8:15-9:15AM - The Bogan Way, Edward Street Intersection Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Performar	ice									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	The Boga	an Way_SE										
22	T1	All MCs	40 16.0	40 16.0	0.037	0.2	LOS A	0.1	1.1	0.12	0.21	0.12	59.4
23a	R1	All MCs	28 18.8	28 18.8	0.037	2.4	LOS A	0.1	1.1	0.14	0.25	0.14	42.0
Appro	bach		68 17.1	68 17.1	0.037	1.1	NA	0.1	1.1	0.13	0.23	0.13	57.3
North	: Edwa	ard St_N	Ē										
7a	L1	All MCs	28 20.0	28 20.0	0.025	5.4	LOS A	0.1	0.8	0.16	0.55	0.16	35.2
9b	R3	All MCs	4 0.0	4 0.0	0.025	7.1	LOS A	0.1	0.8	0.16	0.55	0.16	54.4
Appro	bach		32 17.5	32 17.5	0.025	5.6	LOS A	0.1	0.8	0.16	0.55	0.16	43.2
North	West:	The Bog	an Way_NW										
27b	L3	All MCs	4 0.0	4 0.0	0.036	8.0	LOS A	0.0	0.0	0.00	0.33	0.00	72.7
28	T1	All MCs	60 9.1	60 9.1	0.036	2.1	LOS A	0.0	0.0	0.00	0.33	0.00	76.4
Appro	bach		64 8.5	64 8.5	0.036	2.4	NA	0.0	0.0	0.00	0.33	0.00	76.2
All Ve	hicles		164 13.8	164 13.8	0.037	2.5	NA	0.1	1.1	0.08	0.33	0.08	64.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / IPC | Processed: Monday, 25 September 2023 4:40:25 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 02 [02 (AM BASE) 8:15-9:15AM - JOH_BAR (Site Folder:

AM Peak - (Base case))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

02 (AM BASE) 8:15-9:15AM - The Bogan Way, Johnson Street, Farnell Street, Barton Street Intersection Site Category: (None)

Give-Way (Two-Way)

Vehio	cle Mo	ovement	t Perfo	rma	nce	_									
Mov ID	Turn	Mov Class	F			rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street	_S												
1a	L1	All MCs	140	3.3	140	3.3	0.194	5.7	LOS A	0.8	5.5	0.29	0.56	0.29	30.2
3a	R1	All MCs	36	0.0	36	0.0	0.194	10.9	LOS A	0.8	5.5	0.29	0.56	0.29	36.3
3b	R3	All MCs	6	0.0	6	0.0	0.194	11.9	LOS A	0.8	5.5	0.29	0.56	0.29	38.1
Appro	ach		182	2.5	182	2.5	0.194	6.9	LOS A	0.8	5.5	0.29	0.56	0.29	31.9
South	East:	Johnson	Street_	SE											
21b	L3	All MCs	4	0.0	4	0.0	0.071	9.8	LOS A	0.3	1.9	0.21	0.19	0.21	46.6
22	T1	All MCs	92	3.8	92	3.8	0.071	0.9	LOS A	0.3	1.9	0.21	0.19	0.21	50.9
23	R2	All MCs	10	0.0	10	0.0	0.071	9.2	LOS A	0.3	1.9	0.21	0.19	0.21	41.6
Appro	ach		106	3.3	106	3.3	0.071	2.1	NA	0.3	1.9	0.21	0.19	0.21	49.4
North	East: E	Barton St	reet_NE	Ξ											
24	L2	All MCs	28	5.6	28	5.6	0.091	6.3	LOS A	0.3	2.3	0.39	0.63	0.39	34.9
24a	L1	All MCs	32	0.0	32	0.0	0.091	6.3	LOS A	0.3	2.3	0.39	0.63	0.39	36.7
26	R2	All MCs	44	0.0	44	0.0	0.091	6.8	LOS A	0.3	2.3	0.39	0.63	0.39	27.5
Appro	ach		104	1.5	104	1.5	0.091	6.5	LOS A	0.3	2.3	0.39	0.63	0.39	32.6
North	West:	The Boga	an Way	_NW											
27	L2	All MCs	52	3.0	52	3.0	0.216	3.8	LOS A	0.8	6.2	0.16	0.27	0.16	26.8
28	T1	All MCs	220	5.5	220	5.5	0.216	0.2	LOS A	0.8	6.2	0.16	0.27	0.16	67.1
29a	R1	All MCs	112	4.6	112	4.6	0.216	3.0	LOS A	0.8	6.2	0.16	0.27	0.16	46.2
Appro	ach		384	4.9	384	4.9	0.216	1.5	NA	0.8	6.2	0.16	0.27	0.16	51.7
All Ve	hicles		776	3.7	776	3.7	0.216	3.5	NA	0.8	6.2	0.23	0.38	0.23	41.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 4:40:24 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 03 [03 (AM BASE) 8:15-9:15AM - FAR_WYN (Site Folder: AM Peak - (Base case))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

03 (AM BASE) 8:15-9:15AM - Farnell Street, Wyndham Street Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street													
2	T1	All MCs	44	8.7	44	8.7	0.061	0.1	LOS A	0.2	1.7	0.11	0.35	0.11	49.1
3	R2	All MCs	68	2.0	68	2.0	0.061	5.7	LOS A	0.2	1.7	0.11	0.35	0.11	48.1
Appro	bach		112	4.7	112	4.7	0.061	3.5	NA	0.2	1.7	0.11	0.35	0.11	48.4
East:	Wynd	ham Aver	nue												
4	L2	All MCs	72	0.0	72	0.0	0.050	5.7	LOS A	0.2	1.4	0.12	0.54	0.12	45.6
6	R2	All MCs	8	0.0	8	0.0	0.050	5.6	LOS A	0.2	1.4	0.12	0.54	0.12	30.9
Appro	bach		80	0.0	80	0.0	0.050	5.7	LOS A	0.2	1.4	0.12	0.54	0.12	44.2
North	: Farn	ell Street													
7	L2	All MCs	8	0.0	8	0.0	0.026	4.7	LOS A	0.0	0.0	0.00	0.09	0.00	50.4
8	T1	All MCs	44	6.7	44	6.7	0.026	0.0	LOS A	0.0	0.0	0.00	0.09	0.00	57.6
Appro	bach		52	5.6	52	5.6	0.026	0.7	NA	0.0	0.0	0.00	0.09	0.00	56.4
All Ve	hicles		244	3.3	244	3.3	0.061	3.6	NA	0.2	1.7	0.09	0.36	0.09	47.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / IPC | Processed: Monday, 25 September 2023 4:40:24 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 01 [01 (PM BASE) 4:00-5:00PM - BOG_EDW (Site Folder: PM Peak - Scenario (Base case))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

01 (PM BASE) 8:15-9:15AM - The Bogan Way, Edward Street Intersection Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmai	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total I veh/h	ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	The Boga	an Way_	SE											
22	T1	All MCs	34	6.3	34	6.3	0.026	0.1	LOS A	0.1	0.7	0.08	0.18	0.08	78.8
23a	R1	All MCs	22	0.0	22	0.0	0.026	2.3	LOS A	0.1	0.7	0.11	0.25	0.11	47.2
Appro	bach		56	3.8	56	3.8	0.026	1.0	NA	0.1	0.7	0.09	0.21	0.09	74.6
North	: Edwa	ard St_N	E												
7a	L1	All MCs	23	4.5	23	4.5	0.018	5.1	LOS A	0.1	0.5	0.12	0.54	0.12	35.9
9b	R3	All MCs	2	0.0	2	0.0	0.018	6.7	LOS A	0.1	0.5	0.12	0.54	0.12	54.5
Appro	bach		25	4.2	25	4.2	0.018	5.3	LOS A	0.1	0.5	0.12	0.54	0.12	41.8
North	West:	The Bog	an Way_	NW											
27b	L3	All MCs	1	0.0	1	0.0	0.024	7.8	LOS A	0.0	0.0	0.00	0.06	0.00	71.3
28	T1	All MCs	40 1	13.2	40 ⁻	13.2	0.024	0.2	LOS A	0.0	0.0	0.00	0.06	0.00	76.8
Appro	bach		41 ⁻	12.8	41 ⁻	12.8	0.024	0.4	NA	0.0	0.0	0.00	0.06	0.00	76.6
All Ve	hicles		122	6.9	122	6.9	0.026	1.7	NA	0.1	0.7	0.06	0.23	0.06	71.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / IPC | Processed: Monday, 25 September 2023 4:40:23 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 02 [02 (PM BASE) 4:00-5:00PM - JOH_BAR (Site Folder:

PM Peak - Scenario (Base case))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

02 (PM BASE) 8:15-9:15AM - The Bogan Way, Johnson Street, Farnell Street, Barton Street Intersection Site Category: (None)

Give-Way (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	FI			rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street	_S												
1a	L1	All MCs	177	0.0	177	0.0	0.210	6.1	LOS A	0.9	6.0	0.39	0.61	0.39	30.0
3a	R1	All MCs	24	0.0	24	0.0	0.210	12.8	LOS A	0.9	6.0	0.39	0.61	0.39	36.0
3b	R3	All MCs	6	0.0	6	0.0	0.210	13.5	LOS A	0.9	6.0	0.39	0.61	0.39	37.8
Appro	ach		207	0.0	207	0.0	0.210	7.0	LOS A	0.9	6.0	0.39	0.61	0.39	31.1
South	East:	Johnson	Street_	SE											
21b	L3	All MCs	3	0.0	3	0.0	0.141	8.9	LOS A	0.4	3.1	0.16	0.15	0.16	48.1
22	T1	All MCs	200	0.9	200	0.9	0.141	0.6	LOS A	0.4	3.1	0.16	0.15	0.16	53.6
23	R2	All MCs	21	0.0	21	0.0	0.141	8.1	LOS A	0.4	3.1	0.16	0.15	0.16	42.9
Appro	ach		224	0.8	224	0.8	0.141	1.4	NA	0.4	3.1	0.16	0.15	0.16	51.9
North	East: I	Barton St	reet_NE	Ξ											
24	L2	All MCs	15	0.0	15	0.0	0.138	6.0	LOS A	0.5	3.5	0.45	0.67	0.45	34.4
24a	L1	All MCs	59	2.3	59	2.3	0.138	7.3	LOS A	0.5	3.5	0.45	0.67	0.45	35.7
26	R2	All MCs	58	5.9	58	5.9	0.138	7.4	LOS A	0.5	3.5	0.45	0.67	0.45	26.7
Appro	ach		132	3.6	132	3.6	0.138	7.2	LOS A	0.5	3.5	0.45	0.67	0.45	31.9
North	West:	The Boga	an Way	_NW											
27	L2	All MCs	61	4.8	61	4.8	0.220	4.2	LOS A	1.1	8.2	0.32	0.42	0.32	26.3
28	T1	All MCs	132	4.6	132	4.6	0.220	0.6	LOS A	1.1	8.2	0.32	0.42	0.32	61.5
29a	R1	All MCs	173	1.9	173	1.9	0.220	3.4	LOS A	1.1	8.2	0.32	0.42	0.32	43.3
Appro	ach		366	3.3	366	3.3	0.220	2.6	NA	1.1	8.2	0.32	0.42	0.32	44.3
All Ve	hicles		928	2.0	928	2.0	0.220	3.9	NA	1.1	8.2	0.32	0.43	0.32	39.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 4:40:23 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 03 [03 (PM BASE) 4:00-5:00PM - FAR_WYN (Site Folder: PM Peak - Scenario (Base case))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

03 (PM BASE) 8:15-9:15AM - Farnell Street, Wyndham Street Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Farn	ell Street													
2	T1	All MCs	48	6.1	48	6.1	0.048	0.1	LOS A	0.2	1.2	0.10	0.27	0.10	51.8
3	R2	All MCs	40	3.3	40	3.3	0.048	5.7	LOS A	0.2	1.2	0.10	0.27	0.10	49.0
Appro	bach		88	4.8	88	4.8	0.048	2.6	NA	0.2	1.2	0.10	0.27	0.10	50.2
East:	Wynd	ham Avei	nue												
4	L2	All MCs	52	4.8	52	4.8	0.042	5.7	LOS A	0.2	1.1	0.11	0.55	0.11	45.5
6	R2	All MCs	16	0.0	16	0.0	0.042	5.6	LOS A	0.2	1.1	0.11	0.55	0.11	37.3
Appro	bach		68	3.6	68	3.6	0.042	5.7	LOS A	0.2	1.1	0.11	0.55	0.11	43.9
North	: Farn	ell Street													
7	L2	All MCs	12	0.0	12	0.0	0.025	4.7	LOS A	0.0	0.0	0.00	0.14	0.00	49.6
8	T1	All MCs	40	0.0	40	0.0	0.025	0.0	LOS A	0.0	0.0	0.00	0.14	0.00	56.7
Appro	bach		52	0.0	52	0.0	0.025	1.1	NA	0.0	0.0	0.00	0.14	0.00	54.9
All Ve	hicles		208	3.2	208	3.2	0.048	3.2	NA	0.2	1.2	0.08	0.33	0.08	48.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / IPC | Processed: Monday, 25 September 2023 4:40:23 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 01 [01 (AM Scenario 1) 8:15-9:15AM - BOG_EDW 1 (Site Folder: AM Peak - Scenario 1 (Opening Year 2025))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

01 (AM Scenario 1) 8:15-9:15AM - The Bogan Way, Edward Street Intersection Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Performar	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	East:	The Boga	an Way_SE										
22	T1	All MCs	42 15.4	42 15.4	0.039	0.2	LOS A	0.2	1.2	0.12	0.22	0.12	59.4
23a	R1	All MCs	32 16.7	32 16.7	0.039	2.4	LOS A	0.2	1.2	0.15	0.26	0.15	42.3
Appro	bach		73 15.9	73 15.9	0.039	1.2	NA	0.2	1.2	0.13	0.24	0.13	57.2
North	: Edwa	ard St_N	Ξ										
7a	L1	All MCs	41 18.2	41 18.2	0.034	5.4	LOS A	0.1	1.1	0.16	0.54	0.16	35.3
9b	R3	All MCs	4 0.0	4 0.0	0.034	7.1	LOS A	0.1	1.1	0.16	0.54	0.16	54.4
Appro	bach		45 16.6	45 16.6	0.034	5.6	LOS A	0.1	1.1	0.16	0.54	0.16	41.6
North	West:	The Bog	an Way_NW										
27b	L3	All MCs	4 0.0	4 0.0	0.037	8.0	LOS A	0.0	0.0	0.00	0.33	0.00	72.7
28	T1	All MCs	63 8.7	63 8.7	0.037	2.1	LOS A	0.0	0.0	0.00	0.33	0.00	76.5
Appro	bach		67 8.2	67 8.2	0.037	2.4	NA	0.0	0.0	0.00	0.33	0.00	76.2
All Ve	hicles		185 13.3	185 13.3	0.039	2.7	NA	0.2	1.2	0.09	0.35	0.09	63.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 5:01:52 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 02 [02 (AM Scenario 1) 8:15-9:15AM - JOH_BAR (Site Folder: AM Peak - Scenario 1 (Opening Year 2025))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

02 (AM Scenario 1) 8:15-9:15AM - The Bogan Way, Johnson Street, Farnell Street, Barton Street Intersection Site Category: (None)

Give-Way (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street	_S												
1a	L1	All MCs	148	3.1	148	3.1	0.198	5.7	LOS A	0.8	5.7	0.29	0.56	0.29	30.4
3a	R1	All MCs	37	0.0	37	0.0	0.198	10.4	LOS A	0.8	5.7	0.29	0.56	0.29	36.5
3b	R3	All MCs	6	0.0	6	0.0	0.198	11.4	LOS A	0.8	5.7	0.29	0.56	0.29	38.3
Appro	ach		191	2.4	191	2.4	0.198	6.8	LOS A	0.8	5.7	0.29	0.56	0.29	32.0
South	East:	Johnson	Street_	SE											
21b	L3	All MCs	4	0.0	4	0.0	0.074	10.3	LOS A	0.3	2.0	0.22	0.20	0.22	46.4
22	T1	All MCs	97	3.6	97	3.6	0.074	1.0	LOS A	0.3	2.0	0.22	0.20	0.22	50.6
23	R2	All MCs	10	0.0	10	0.0	0.074	9.7	LOS A	0.3	2.0	0.22	0.20	0.22	41.4
Appro	ach		111	3.1	111	3.1	0.074	2.2	NA	0.3	2.0	0.22	0.20	0.22	49.1
North	East: I	Barton St	reet_NE												
24	L2	All MCs	30	5.3	30	5.3	0.094	6.4	LOS A	0.3	2.3	0.38	0.63	0.38	34.9
24a	L1	All MCs	33	0.0	33	0.0	0.094	6.2	LOS A	0.3	2.3	0.38	0.63	0.38	36.7
26	R2	All MCs	46	0.0	46	0.0	0.094	6.7	LOS A	0.3	2.3	0.38	0.63	0.38	27.5
Appro	ach		109	1.4	109	1.4	0.094	6.5	LOS A	0.3	2.3	0.38	0.63	0.38	32.7
North	West:	The Boga	an Way_	_NW											
27	L2	All MCs	57	2.8	57	2.8	0.199	3.8	LOS A	0.5	4.1	0.11	0.22	0.11	27.2
28	T1	All MCs	238	5.6	238	5.6	0.199	0.2	LOS A	0.5	4.1	0.11	0.22	0.11	69.4
29a	R1	All MCs	51	10.0	51	10.0	0.199	3.2	LOS A	0.5	4.1	0.11	0.22	0.11	46.4
Appro	ach		346	5.8	346	5.8	0.199	1.2	NA	0.5	4.1	0.11	0.22	0.11	54.1
All Ve	hicles		757	3.9	757	3.9	0.199	3.5	NA	0.8	5.7	0.21	0.36	0.21	42.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 5:01:52 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22:23\P2231 School Road Forbes - TIA\02 Doing\02:00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 03 [03 (AM Scenario 1) 8:15-9:15AM - FAR_WYN (Site Folder: AM Peak - Scenario 1 (Opening Year 2025))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

03 (AM Scenario 1) 8:15-9:15AM - Farnell Street, Wyndham Street Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	ovement	t Perfo	rmai	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street													
2	T1	All MCs	52	7.4	52	7.4	0.068	0.1	LOS A	0.3	1.9	0.13	0.34	0.13	49.8
3	R2	All MCs	71	2.0	71	2.0	0.068	5.7	LOS A	0.3	1.9	0.13	0.34	0.13	48.4
Appro	bach		122	4.3	122	4.3	0.068	3.4	NA	0.3	1.9	0.13	0.34	0.13	48.8
East:	Wynd	ham Aver	nue												
4	L2	All MCs	75	0.0	75	0.0	0.053	5.7	LOS A	0.2	1.4	0.14	0.54	0.14	45.5
6	R2	All MCs	8	0.0	8	0.0	0.053	5.7	LOS A	0.2	1.4	0.14	0.54	0.14	30.8
Appro	bach		83	0.0	83	0.0	0.053	5.7	LOS A	0.2	1.4	0.14	0.54	0.14	44.1
North	: Farn	ell Street													
7	L2	All MCs	11	0.0	11	0.0	0.035	4.7	LOS A	0.0	0.0	0.00	0.09	0.00	50.4
8	T1	All MCs	60	4.9	60	4.9	0.035	0.0	LOS A	0.0	0.0	0.00	0.09	0.00	57.7
Appro	bach		71	4.1	71	4.1	0.035	0.7	NA	0.0	0.0	0.00	0.09	0.00	56.5
All Ve	hicles		277	2.9	277	2.9	0.068	3.4	NA	0.3	1.9	0.10	0.34	0.10	48.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / IPC | Processed: Monday, 25 September 2023 5:01:53 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 01 [01 (PM Scenario 1) 4:00-5:00PM - BOG_EDW 1 (Site Folder: PM Peak - Scenario 1 (Opening Year 2025))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

01 (PM Scenario 1) 4:00-5:00PM - The Bogan Way, Edward Street Intersection Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mai	nce										
Mov ID	Turn	Mov Class	Dema Flo [Total H veh/h	ows IV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	The Boga	an Way_	SE											
22	T1	All MCs	35	6.1	35	6.1	0.035	0.1	LOS A	0.2	1.1	0.08	0.22	0.08	77.0
23a	R1	All MCs	39	0.0	39	0.0	0.035	2.3	LOS A	0.2	1.1	0.12	0.33	0.12	45.9
Appro	bach		74	2.9	74	2.9	0.035	1.3	NA	0.2	1.1	0.10	0.28	0.10	70.6
North	: Edwa	ard St_N	Ē												
7a	L1	All MCs	26	4.0	26	4.0	0.020	5.1	LOS A	0.1	0.6	0.12	0.54	0.12	35.9
9b	R3	All MCs	2	0.0	2	0.0	0.020	6.9	LOS A	0.1	0.6	0.12	0.54	0.12	54.5
Appro	bach		28	3.7	28	3.7	0.020	5.3	LOS A	0.1	0.6	0.12	0.54	0.12	41.3
North	West:	The Bog	an Way_	NW											
27b	L3	All MCs	1	0.0	1	0.0	0.024	7.9	LOS A	0.0	0.0	0.00	0.06	0.00	71.4
28	T1	All MCs	41 1	2.8	41 ⁻	12.8	0.024	0.2	LOS A	0.0	0.0	0.00	0.06	0.00	76.9
Appro	bach		42 1	2.5	42	12.5	0.024	0.4	NA	0.0	0.0	0.00	0.06	0.00	76.7
All Ve	hicles		144	5.8	144	5.8	0.035	1.8	NA	0.2	1.1	0.08	0.27	0.08	69.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 5:01:53 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 02 [02 (PM Scenario 1) 4:00-5:00PM - JOH_BAR (Site Folder: PM Peak - Scenario 1 (Opening Year 2025))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

02 (PM Scenario 1) 4:00-5:00PM - The Bogan Way, Johnson Street, Farnell Street, Barton Street Intersection Site Category: (None)

Give-Way (Two-Way)

Vehic	le Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	F			rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street	_S												
1a	L1	All MCs	191	0.0	191	0.0	0.230	6.1	LOS A	0.9	6.6	0.41	0.62	0.41	29.8
3a	R1	All MCs	25	0.0	25	0.0	0.230	13.7	LOS A	0.9	6.6	0.41	0.62	0.41	35.8
3b	R3	All MCs	6	0.0	6	0.0	0.230	14.2	LOS A	0.9	6.6	0.41	0.62	0.41	37.6
Appro	ach		221	0.0	221	0.0	0.230	7.2	LOS A	0.9	6.6	0.41	0.62	0.41	30.8
South	East:	Johnson	Street_	SE											
21b	L3	All MCs	3	0.0	3	0.0	0.149	9.1	LOS A	0.5	3.2	0.16	0.14	0.16	48.2
22	T1	All MCs	214	0.8	214	0.8	0.149	0.6	LOS A	0.5	3.2	0.16	0.14	0.16	53.7
23	R2	All MCs	21	0.0	21	0.0	0.149	8.2	LOS A	0.5	3.2	0.16	0.14	0.16	43.0
Appro	ach		238	0.8	238	0.8	0.149	1.4	NA	0.5	3.2	0.16	0.14	0.16	52.1
North	East: I	Barton St	reet_NE	Ξ											
24	L2	All MCs	15	0.0	15	0.0	0.144	6.0	LOS A	0.5	3.7	0.46	0.68	0.46	34.1
24a	L1	All MCs	60	2.3	60	2.3	0.144	7.6	LOS A	0.5	3.7	0.46	0.68	0.46	35.4
26	R2	All MCs	58	5.9	58	5.9	0.144	7.5	LOS A	0.5	3.7	0.46	0.68	0.46	26.5
Appro	ach		133	3.6	133	3.6	0.144	7.4	LOS A	0.5	3.7	0.46	0.68	0.46	31.7
North	West:	The Boga	an Way	_NW											
27	L2	All MCs	64	4.5	64	4.5	0.232	4.2	LOS A	1.2	8.7	0.34	0.43	0.34	26.3
28	T1	All MCs	138	4.4	138	4.4	0.232	0.7	LOS A	1.2	8.7	0.34	0.43	0.34	61.2
29a	R1	All MCs	181	1.8	181	1.8	0.232	3.5	LOS A	1.2	8.7	0.34	0.43	0.34	43.2
Appro	ach		383	3.2	383	3.2	0.232	2.6	NA	1.2	8.7	0.34	0.43	0.34	44.2
All Ve	hicles		976	1.9	976	1.9	0.232	4.0	NA	1.2	8.7	0.33	0.44	0.33	39.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 5:01:51 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 03 [03 (PM Scenario 1) 4:00-5:00PM - FAR_WYN (Site Folder: PM Peak - Scenario 1 (Opening Year 2025))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

03 (PM Scenario 1) 4:00-5:00PM - Farnell Street, Wyndham Street Site Category: (None) Give-Way (Two-Way)

Vehic	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street													
2	T1	All MCs	64	2.3	64	2.3	0.056	0.1	LOS A	0.2	1.3	0.10	0.24	0.10	52.7
3	R2	All MCs	41	3.2	41	3.2	0.056	5.7	LOS A	0.2	1.3	0.10	0.24	0.10	50.1
Appro	bach		105	2.6	105	2.6	0.056	2.3	NA	0.2	1.3	0.10	0.24	0.10	51.4
East:	Wynd	ham Aver	nue												
4	L2	All MCs	55	4.5	55	4.5	0.050	5.7	LOS A	0.2	1.2	0.12	0.55	0.12	45.5
6	R2	All MCs	27	0.0	27	0.0	0.050	5.6	LOS A	0.2	1.2	0.12	0.55	0.12	37.2
Appro	bach		82	3.0	82	3.0	0.050	5.7	LOS A	0.2	1.2	0.12	0.55	0.12	43.1
North	: Farn	ell Street													
7	L2	All MCs	15	0.0	15	0.0	0.029	4.7	LOS A	0.0	0.0	0.00	0.14	0.00	49.5
8	T1	All MCs	46	0.0	46	0.0	0.029	0.0	LOS A	0.0	0.0	0.00	0.14	0.00	56.5
Appro	bach		61	0.0	61	0.0	0.029	1.2	NA	0.0	0.0	0.00	0.14	0.00	54.6
All Ve	hicles		249	2.1	249	2.1	0.056	3.1	NA	0.2	1.3	0.08	0.32	0.08	48.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / IPC | Processed: Monday, 25 September 2023 5:01:54 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 01 [01 (AM Scenario 2) 8:15-9:15AM - BOG_EDW 1 (Site Folder: AM Peak - Scenario 2 (50% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

01 (AM Scenario 2) 8:15-9:15AM - The Bogan Way, Edward Street Intersection Site Category: (None) Give-Way (Two-Way)

Vehi	cle Mo	ovemen	t Performar	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	East:	The Boga	an Way_SE										
22	T1	All MCs	42 15.4	42 15.4	0.059	0.2	LOS A	0.3	2.1	0.11	0.24	0.11	59.3
23a	R1	All MCs	68 12.8	68 12.8	0.059	2.5	LOS A	0.3	2.1	0.18	0.37	0.18	41.9
Appro	bach		110 13.8	110 13.8	0.059	1.6	NA	0.3	2.1	0.15	0.32	0.15	55.0
North	: Edwa	ard St_N	Ē										
7a	L1	All MCs	164 20.5	164 20.5	0.152	5.5	LOS A	0.6	5.2	0.19	0.55	0.19	35.0
9b	R3	All MCs	24 0.0	24 0.0	0.152	7.7	LOS A	0.6	5.2	0.19	0.55	0.19	54.4
Appro	bach		188 17.8	188 17.8	0.152	5.8	LOS A	0.6	5.2	0.19	0.55	0.19	43.2
North	West:	The Bog	an Way_NW										
27b	L3	All MCs	8 0.0	8 0.0	0.040	8.0	LOS A	0.0	0.0	0.00	0.35	0.00	72.3
28	T1	All MCs	63 8.7	63 8.7	0.040	2.1	LOS A	0.0	0.0	0.00	0.35	0.00	76.1
Appro	bach		71 7.7	71 7.7	0.040	2.7	NA	0.0	0.0	0.00	0.35	0.00	75.6
All Ve	hicles		369 14.7	369 14.7	0.152	3.9	NA	0.6	5.2	0.14	0.45	0.14	57.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 5:18:11 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 02 [02 (AM Scenario 2) 8:15-9:15AM - JOH_BAR (Site Folder: AM Peak - Scenario 2 (50% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

02 (AM Scenario 2) 8:15-9:15AM - The Bogan Way, Johnson Street, Farnell Street, Barton Street Intersection Site Category: (None)

Give-Way (Two-Way)

Vehic	cle Mo	ovement	l Perfo	rma	nce	_									
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Ieue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street	_S												
1a	L1	All MCs	168	2.8	168	2.8	0.268	5.8	LOS A	1.1	7.9	0.38	0.57	0.38	28.5
3a	R1	All MCs	37	0.0	37	0.0	0.268	17.7	LOS B	1.1	7.9	0.38	0.57	0.38	34.4
3b	R3	All MCs	6	0.0	6	0.0	0.268	17.0	LOS B	1.1	7.9	0.38	0.57	0.38	36.2
Appro	bach		211	2.2	211	2.2	0.268	8.2	LOS A	1.1	7.9	0.38	0.57	0.38	29.8
South	East:	Johnson	Street_	SE											
21b	L3	All MCs	4	0.0	4	0.0	0.088	13.0	LOS A	0.4	2.9	0.26	0.24	0.26	44.5
22	T1	All MCs	110	3.1	110	3.1	0.088	1.9	LOS A	0.4	2.9	0.26	0.24	0.26	47.5
23	R2	All MCs	10	0.0	10	0.0	0.088	12.6	LOS A	0.4	2.9	0.26	0.24	0.26	39.7
Appro	bach		125	2.8	125	2.8	0.088	3.1	NA	0.4	2.9	0.26	0.24	0.26	46.4
North	East: I	Barton St	reet_NE	Ξ											
24	L2	All MCs	30	5.3	30	5.3	0.124	6.9	LOS A	0.4	3.0	0.48	0.72	0.48	33.9
24a	L1	All MCs	33	0.0	33	0.0	0.124	7.7	LOS A	0.4	3.0	0.48	0.72	0.48	35.5
26	R2	All MCs	53	0.0	53	0.0	0.124	7.6	LOS A	0.4	3.0	0.48	0.72	0.48	26.5
Appro	bach		115	1.3	115	1.3	0.124	7.5	LOS A	0.4	3.0	0.48	0.72	0.48	31.4
North	West:	The Boga	an Way_	_NW											
27	L2	All MCs	79	4.0	79	4.0	0.332	3.9	LOS A	1.5	10.8	0.20	0.29	0.20	26.7
28	T1	All MCs	335	5.8	335	5.8	0.332	0.3	LOS A	1.5	10.8	0.20	0.29	0.20	66.6
29a	R1	All MCs	171	4.5	171	4.5	0.332	3.2	LOS A	1.5	10.8	0.20	0.29	0.20	45.9
Appro	bach		585	5.2	585	5.2	0.332	1.6	NA	1.5	10.8	0.20	0.29	0.20	51.4
All Ve	hicles		1036	3.9	1036	3.9	0.332	3.8	NA	1.5	10.8	0.27	0.39	0.27	41.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 5:18:12 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 03 [03 (AM Scenario 2) 8:15-9:15AM - FAR_WYN (Site Folder: AM Peak - Scenario 2 (50% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

03 (AM Scenario 2) 8:15-9:15AM - Farnell Street, Wyndham Street Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total] veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street													
2	T1	All MCs	107	8.9	107	8.9	0.105	0.5	LOS A	0.4	2.7	0.27	0.33	0.27	50.6
3	R2	All MCs	71	2.0	71	2.0	0.105	6.4	LOS A	0.4	2.7	0.27	0.33	0.27	48.9
Appro	bach		178	6.2	178	6.2	0.105	2.9	NA	0.4	2.7	0.27	0.33	0.27	49.8
East:	Wynd	ham Aver	nue												
4	L2	All MCs	75	0.0	75	0.0	0.070	6.4	LOS A	0.3	1.8	0.33	0.60	0.33	44.6
6	R2	All MCs	19	0.0	19	0.0	0.070	5.9	LOS A	0.3	1.8	0.33	0.60	0.33	30.2
Appro	bach		94	0.0	94	0.0	0.070	6.3	LOS A	0.3	1.8	0.33	0.60	0.33	41.8
North	: Farn	ell Street													
7	L2	All MCs	48	0.0	48	0.0	0.153	4.7	LOS A	0.0	0.0	0.00	0.09	0.00	50.3
8	T1	All MCs	260	7.9	260	7.9	0.153	0.0	LOS A	0.0	0.0	0.00	0.09	0.00	57.5
Appro	bach		308	6.7	308	6.7	0.153	0.7	NA	0.0	0.0	0.00	0.09	0.00	56.3
All Ve	hicles		580	5.4	580	5.4	0.153	2.3	NA	0.4	2.7	0.14	0.25	0.14	50.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / IPC | Processed: Monday, 25 September 2023 5:18:12 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 01 [01 (PM Scenario 2) 4:00-5:00PM - BOG_EDW 1 (Site Folder: PM Peak - Scenario 2 (50% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

01 (PM Scenario 2) 4:00-5:00PM - The Bogan Way, Edward Street Intersection Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovement	t Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	The Boga	an Way_SE										
22	T1	All MCs	35 6.1	35 6.1	0.019	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	80.0
23a	R1	All MCs	164 0.0	164 0.0	0.095	2.4	LOS A	0.5	3.2	0.14	0.49	0.14	43.4
Appro	bach		199 1.1	199 1.1	0.095	2.0	NA	0.5	3.2	0.12	0.41	0.12	59.9
North	: Edwa	ard St_NE	Ξ										
7a	L1	All MCs	63 5.0	63 5.0	0.049	5.2	LOS A	0.2	1.4	0.13	0.54	0.13	35.8
9b	R3	All MCs	5 0.0	5 0.0	0.049	8.1	LOS A	0.2	1.4	0.13	0.54	0.13	54.5
Appro	bach		68 4.6	68 4.6	0.049	5.4	LOS A	0.2	1.4	0.13	0.54	0.13	41.4
North	West:	The Boga	an Way_NW										
27b	L3	All MCs	6 0.0	6 0.0	0.028	7.9	LOS A	0.0	0.0	0.00	0.13	0.00	70.7
28	T1	All MCs	41 12.8	41 12.8	0.028	0.2	LOS A	0.0	0.0	0.00	0.13	0.00	76.0
Appro	bach		47 11.1	47 11.1	0.028	1.3	NA	0.0	0.0	0.00	0.13	0.00	75.2
All Ve	hicles		315 3.3	315 3.3	0.095	2.6	NA	0.5	3.2	0.10	0.40	0.10	61.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 5:18:13 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 02 [02 (PM Scenario 2) 4:00-5:00PM - JOH_BAR (Site Folder: PM Peak - Scenario 2 (50% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

02 (PM Scenario 2) 4:00-5:00PM - The Bogan Way, Johnson Street, Farnell Street, Barton Street Intersection Site Category: (None)

Give-Way (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	FI			rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street	_S												
1a	L1	All MCs	280	0.0	280	0.0	0.327	6.3	LOS A	1.5	10.2	0.47	0.64	0.47	29.2
3a	R1	All MCs	25	0.0	25	0.0	0.327	19.8	LOS B	1.5	10.2	0.47	0.64	0.47	35.2
3b	R3	All MCs	6	0.0	6	0.0	0.327	16.7	LOS B	1.5	10.2	0.47	0.64	0.47	37.0
Appro	ach		311	0.0	311	0.0	0.327	7.6	LOS A	1.5	10.2	0.47	0.64	0.47	29.9
South	East:	Johnson	Street_	SE											
21b	L3	All MCs	3	0.0	3	0.0	0.165	9.6	LOS A	0.5	3.5	0.16	0.14	0.16	48.2
22	T1	All MCs	241	0.7	241	0.7	0.165	0.6	LOS A	0.5	3.5	0.16	0.14	0.16	53.6
23	R2	All MCs	21	0.0	21	0.0	0.165	8.7	LOS A	0.5	3.5	0.16	0.14	0.16	42.9
Appro	ach		265	0.7	265	0.7	0.165	1.4	NA	0.5	3.5	0.16	0.14	0.16	52.2
North	East: E	Barton St	reet_NE	Ξ											
24	L2	All MCs	15	0.0	15	0.0	0.288	6.3	LOS A	1.1	8.0	0.54	0.79	0.61	32.7
24a	L1	All MCs	62	2.2	62	2.2	0.288	8.8	LOS A	1.1	8.0	0.54	0.79	0.61	33.8
26	R2	All MCs	163	6.3	163	6.3	0.288	8.7	LOS A	1.1	8.0	0.54	0.79	0.61	25.1
Appro	ach		239	4.9	239	4.9	0.288	8.6	LOS A	1.1	8.0	0.54	0.79	0.61	28.0
North	West:	The Boga	an Way	_NW											
27	L2	All MCs	73	4.0	73	4.0	0.264	4.4	LOS A	1.4	10.2	0.37	0.45	0.37	26.0
28	T1	All MCs	155	4.7	155	4.7	0.264	0.8	LOS A	1.4	10.2	0.37	0.45	0.37	60.5
29a	R1	All MCs	203	1.6	203	1.6	0.264	3.7	LOS A	1.4	10.2	0.37	0.45	0.37	42.8
Appro	ach		430	3.1	430	3.1	0.264	2.8	NA	1.4	10.2	0.37	0.45	0.37	43.7
All Ve	hicles		1245	2.2	1245	2.2	0.327	4.8	NA	1.5	10.2	0.38	0.50	0.39	37.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 5:18:14 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 03 [03 (PM Scenario 2) 4:00-5:00PM - FAR_WYN (Site Folder: PM Peak - Scenario 2 (50% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

03 (PM Scenario 2) 4:00-5:00PM - Farnell Street, Wyndham Street Site Category: (None) Give-Way (Two-Way)

Vehic	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street													
2	T1	All MCs	266	3.3	266	3.3	0.155	0.1	LOS A	0.2	1.7	0.07	0.10	0.07	56.8
3	R2	All MCs	41	3.2	41	3.2	0.155	5.9	LOS A	0.2	1.7	0.07	0.10	0.07	52.6
Appro	ach		308	3.3	308	3.3	0.155	0.9	NA	0.2	1.7	0.07	0.10	0.07	55.9
East:	Wynd	ham Aver	nue												
4	L2	All MCs	55	4.5	55	4.5	0.089	5.9	LOS A	0.3	1.9	0.20	0.57	0.20	45.0
6	R2	All MCs	89	0.0	89	0.0	0.089	5.9	LOS A	0.3	1.9	0.20	0.57	0.20	36.8
Appro	ach		144	1.7	144	1.7	0.089	5.9	LOS A	0.3	1.9	0.20	0.57	0.20	40.4
North	Farn	ell Street													
7	L2	All MCs	33	0.0	33	0.0	0.067	4.7	LOS A	0.0	0.0	0.00	0.14	0.00	49.6
8	T1	All MCs	107	0.0	107	0.0	0.067	0.0	LOS A	0.0	0.0	0.00	0.14	0.00	56.6
Appro	ach		140	0.0	140	0.0	0.067	1.1	NA	0.0	0.0	0.00	0.14	0.00	54.8
All Ve	hicles		592	2.1	592	2.1	0.155	2.1	NA	0.3	1.9	0.09	0.22	0.09	50.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 5:18:10 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 01 [01 (AM Scenario 3) 8:15-9:15AM - BOG_EDW 1 (Site Folder: AM Peak - Scenario 3 (100% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

01 (AM Scenario 3) 8:15-9:15AM - The Bogan Way, Edward Street Intersection Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rmai	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total I veh/h	ows HV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	The Boga			VOII/II			000		Voli					
22	T1	All MCs	42 ⁻	15.4	42 ⁻	15.4	0.094	0.2	LOS A	0.4	3.6	0.06	0.15	0.06	59.6
23a	R1	All MCs	132 ⁻	17.3	132 ⁻	17.3	0.094	2.5	LOS A	0.4	3.6	0.19	0.46	0.19	40.2
Appro	bach		173 ⁻	16.9	173 ⁻	16.9	0.094	1.9	NA	0.4	3.6	0.16	0.38	0.16	51.9
North	: Edwa	ard St_NE	E												
7a	L1	All MCs	362	6.7	362	6.7	0.329	5.3	LOS A	1.7	12.5	0.23	0.55	0.23	35.0
9b	R3	All MCs	56	0.0	56	0.0	0.329	9.2	LOS A	1.7	12.5	0.23	0.55	0.23	54.3
Appro	bach		418	5.8	418	5.8	0.329	5.9	LOS A	1.7	12.5	0.23	0.55	0.23	43.4
North	West:	The Boga	an Way_	NW											
27b	L3	All MCs	12	0.0	12	0.0	0.042	8.0	LOS A	0.0	0.0	0.00	0.37	0.00	72.0
28	T1	All MCs	63	8.7	63	8.7	0.042	2.1	LOS A	0.0	0.0	0.00	0.37	0.00	75.7
Appro	bach		75	7.3	75	7.3	0.042	3.0	NA	0.0	0.0	0.00	0.37	0.00	75.0
All Ve	hicles		666	8.8	666	8.8	0.329	4.5	NA	1.7	12.5	0.18	0.49	0.18	52.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 7:42:30 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 02 [02 (AM Scenario 3) 8:15-9:15AM - JOH_BAR (Site Folder: AM Peak - Scenario 3 (100% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

02 (AM Scenario 3) 8:15-9:15AM - The Bogan Way, Johnson Street, Farnell Street, Barton Street Intersection Site Category: (None)

Give-Way (Two-Way)

Vehic	le Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	FI			rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street	_S												
1a	L1	All MCs	205	3.8	205	3.8	0.466	8.1	LOS A	3.5	25.2	0.63	0.67	0.88	22.1
3a	R1	All MCs	37	0.0	37	0.0	0.466	46.2	LOS D	3.5	25.2	0.63	0.67	0.88	27.2
3b	R3	All MCs	6	0.0	6	0.0	0.466	36.4	LOS C	3.5	25.2	0.63	0.67	0.88	29.4
Appro	ach		248	3.1	248	3.1	0.466	14.5	LOS B	3.5	25.2	0.63	0.67	0.88	23.1
South	East:	Johnson	Street_	SE											
21b	L3	All MCs	4	0.0	4	0.0	0.121	21.4	LOS B	0.9	6.2	0.34	0.33	0.34	38.5
22	T1	All MCs	135	3.4	135	3.4	0.121	5.0	LOS A	0.9	6.2	0.34	0.33	0.34	38.5
23	R2	All MCs	10	0.0	10	0.0	0.121	21.2	LOS B	0.9	6.2	0.34	0.33	0.34	34.6
Appro	ach		149	3.1	149	3.1	0.121	6.5	NA	0.9	6.2	0.34	0.33	0.34	38.2
North	East: I	Barton St	reet_NE	Ξ											
24	L2	All MCs	30	5.3	30	5.3	0.195	8.0	LOS A	0.6	4.6	0.63	0.84	0.63	31.5
24a	L1	All MCs	33	0.0	33	0.0	0.195	11.1	LOS A	0.6	4.6	0.63	0.84	0.63	32.6
26	R2	All MCs	64	0.0	64	0.0	0.195	9.5	LOS A	0.6	4.6	0.63	0.84	0.63	24.1
Appro	ach		127	1.2	127	1.2	0.195	9.6	LOS A	0.6	4.6	0.63	0.84	0.63	28.4
North	West:	The Boga	an Way_	_NW											
27	L2	All MCs	120	2.6	120	2.6	0.504	4.1	LOS A	2.7	19.8	0.26	0.32	0.26	26.4
28	T1	All MCs	508	5.5	508	5.5	0.504	0.4	LOS A	2.7	19.8	0.26	0.32	0.26	65.4
29a	R1	All MCs	259	4.5	259	4.5	0.504	3.5	LOS A	2.7	19.8	0.26	0.32	0.26	45.3
Appro	ach		886	4.8	886	4.8	0.504	1.8	NA	2.7	19.8	0.26	0.32	0.26	50.6
All Ve	hicles		1411	4.0	1411	4.0	0.504	5.2	NA	3.5	25.2	0.37	0.43	0.41	38.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 7:42:31 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 03 [03 (PM Scenario 3) 4:00-5:00PM - FAR_WYN (Site Folder: PM Peak - Scenario 3 (100% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

03 (PM Scenario 3) 4:00-5:00PM - Farnell Street, Wyndham Street Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total] veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Farn	ell Street													
2	T1	All MCs	481	3.0	481	3.0	0.260	0.1	LOS A	0.3	2.0	0.06	0.07	0.06	57.8
3	R2	All MCs	41	3.2	41	3.2	0.260	6.3	LOS A	0.3	2.0	0.06	0.07	0.06	53.2
Appro	bach		523	3.0	523	3.0	0.260	0.6	NA	0.3	2.0	0.06	0.07	0.06	57.2
East:	Wynd	ham Aver	nue												
4	L2	All MCs	55	4.5	55	4.5	0.145	6.2	LOS A	0.4	2.8	0.28	0.62	0.28	44.6
6	R2	All MCs	160	0.0	160	0.0	0.145	6.2	LOS A	0.4	2.8	0.28	0.62	0.28	36.4
Appro	bach		215	1.2	215	1.2	0.145	6.2	LOS A	0.4	2.8	0.28	0.62	0.28	38.8
North	: Farn	ell Street													
7	L2	All MCs	51	0.0	51	0.0	0.107	4.7	LOS A	0.0	0.0	0.00	0.13	0.00	49.6
8	T1	All MCs	173	0.0	173	0.0	0.107	0.0	LOS A	0.0	0.0	0.00	0.13	0.00	56.7
Appro	bach		224	0.0	224	0.0	0.107	1.1	NA	0.0	0.0	0.00	0.13	0.00	54.9
All Ve	hicles		961	1.9	961	1.9	0.260	2.0	NA	0.4	2.8	0.10	0.21	0.10	51.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / IPC | Processed: Monday, 25 September 2023 7:42:34 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 01 [01 (PM Scenario 3) 4:00-5:00PM - BOG_EDW 1 (Site Folder: PM Peak - Scenario 3 (100% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

01 (PM Scenario 3) 4:00-5:00PM - The Bogan Way, Edward Street Intersection Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perforn	nano	се										
Mov ID	Turn	Mov Class	Dema Flov [Total H ^v veh/h	ws V][[·]		ival ows IV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	East:	The Boga	an Way_S			,,,		000		Volt					
22	T1	All MCs	35 6	6.1	35	6.1	0.019	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	80.0
23a	R1	All MCs	295 0	0.0	295	0.0	0.172	2.4	LOS A	0.9	6.2	0.16	0.49	0.16	43.3
Appro	bach		329 0).6	329	0.6	0.172	2.1	NA	0.9	6.2	0.14	0.44	0.14	54.8
North	: Edwa	ard St_NE	Ξ												
7a	L1	All MCs	100 4	1.2	100	4.2	0.082	5.2	LOS A	0.3	2.4	0.14	0.54	0.14	35.7
9b	R3	All MCs	9 0	0.0	9	0.0	0.082	9.8	LOS A	0.3	2.4	0.14	0.54	0.14	54.5
Appro	bach		109 3	8.8	109	3.8	0.082	5.6	LOS A	0.3	2.4	0.14	0.54	0.14	41.8
North	West:	The Boga	an Way_N	1W											
27b	L3	All MCs	11 C	0.0	11	0.0	0.030	7.9	LOS A	0.0	0.0	0.00	0.18	0.00	70.3
28	T1	All MCs	41 12	2.8	41 1	2.8	0.030	0.2	LOS A	0.0	0.0	0.00	0.18	0.00	75.4
Appro	bach		52 10).2	52 1	0.2	0.030	1.8	NA	0.0	0.0	0.00	0.18	0.00	74.2
All Ve	hicles		491 2	2.4	491	2.4	0.172	2.9	NA	0.9	6.2	0.13	0.44	0.13	57.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / IPC | Processed: Monday, 25 September 2023 7:42:32 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 02 [02 (PM Scenario 3) 4:00-5:00PM - JOH_BAR (Site Folder: PM Peak - Scenario 3 (100% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

02 (PM Scenario 3) 4:00-5:00PM - The Bogan Way, Johnson Street, Farnell Street, Barton Street Intersection Site Category: (None)

Give-Way (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street	_S												
1a	L1	All MCs	373	0.0	373	0.0	0.443	7.4	LOS A	2.9	20.6	0.55	0.72	0.70	27.4
3a	R1	All MCs	25	0.0	25	0.0	0.443	30.3	LOS C	2.9	20.6	0.55	0.72	0.70	33.2
3b	R3	All MCs	6	0.0	6	0.0	0.443	21.1	LOS B	2.9	20.6	0.55	0.72	0.70	35.1
Appro	ach		404	0.0	404	0.0	0.443	9.0	LOS A	2.9	20.6	0.55	0.72	0.70	27.9
South	East:	Johnson	Street_	SE											
21b	L3	All MCs	3	0.0	3	0.0	0.183	10.0	LOS A	0.5	3.7	0.15	0.14	0.15	48.2
22	T1	All MCs	273	0.7	273	0.7	0.183	0.7	LOS A	0.5	3.7	0.15	0.14	0.15	53.8
23	R2	All MCs	21	0.0	21	0.0	0.183	9.1	LOS A	0.5	3.7	0.15	0.14	0.15	43.0
Appro	ach		298	0.6	298	0.6	0.183	1.4	NA	0.5	3.7	0.15	0.14	0.15	52.5
North	East: E	Barton St	reet_NE	Ξ											
24	L2	All MCs	15	0.0	15	0.0	0.466	7.2	LOS A	2.2	15.9	0.64	0.95	0.96	30.5
24a	L1	All MCs	62	2.2	62	2.2	0.466	10.9	LOS A	2.2	15.9	0.64	0.95	0.96	31.3
26	R2	All MCs	264	5.8	264	5.8	0.466	10.7	LOS A	2.2	15.9	0.64	0.95	0.96	23.0
Appro	ach		340	4.9	340	4.9	0.466	10.6	LOS A	2.2	15.9	0.64	0.95	0.96	25.0
North	West:	The Boga	an Way	_NW											
27	L2	All MCs	76	3.8	76	3.8	0.297	4.6	LOS A	1.6	11.9	0.40	0.48	0.40	26.0
28	T1	All MCs	172	4.9	172	4.9	0.297	1.0	LOS A	1.6	11.9	0.40	0.48	0.40	59.6
29a	R1	All MCs	226	2.2	226	2.2	0.297	3.9	LOS A	1.6	11.9	0.40	0.48	0.40	42.2
Appro	ach		473	3.4	473	3.4	0.297	2.9	NA	1.6	11.9	0.40	0.48	0.40	43.5
All Ve	hicles		1515	2.3	1515	2.3	0.466	6.0	NA	2.9	20.6	0.45	0.58	0.56	34.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / 1PC | Processed: Monday, 25 September 2023 7:42:33 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9

V Site: 03 [03 (AM Scenario 3) 8:15-9:15AM - FAR_WYN (Site Folder: AM Peak - Scenario 3 (100% completion))]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

03 (AM Scenario 3) 8:15-9:15AM - Farnell Street, Wyndham Street Site Category: (None) Give-Way (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total] veh/h	lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Farn	ell Street													
2	T1	All MCs	205	8.4	205	8.4	0.183	1.4	LOS A	0.7	5.0	0.34	0.43	0.34	51.0
3	R2	All MCs	71	2.0	71	2.0	0.183	8.5	LOS A	0.7	5.0	0.34	0.43	0.34	49.1
Appro	ach		275	6.8	275	6.8	0.183	3.2	NA	0.7	5.0	0.34	0.43	0.34	50.3
East:	Wynd	ham Aver	nue												
4	L2	All MCs	75	0.0	75	0.0	0.117	8.4	LOS A	0.4	2.7	0.50	0.76	0.50	43.5
6	R2	All MCs	37	0.0	37	0.0	0.117	6.5	LOS A	0.4	2.7	0.50	0.76	0.50	29.4
Appro	ach		113	0.0	113	0.0	0.117	7.8	LOS A	0.4	2.7	0.50	0.76	0.50	38.9
North	Farn	ell Street													
7	L2	All MCs	109	0.0	109	0.0	0.352	4.8	LOS A	0.0	0.0	0.00	0.09	0.00	50.3
8	T1	All MCs	607	6.3	607	6.3	0.352	0.0	LOS A	0.0	0.0	0.00	0.09	0.00	57.4
Appro	ach		717	5.3	717	5.3	0.352	0.7	NA	0.0	0.0	0.00	0.09	0.00	56.2
All Ve	hicles		1105	5.1	1105	5.1	0.352	2.1	NA	0.7	5.0	0.14	0.24	0.14	51.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: CROSSLEY TRANSPORT PLANNING | Licence: NETWORK / IPC | Processed: Monday, 25 September 2023 7:42:30 PM Project: C:\Users\kirkm\Crossley Transport Planning\Our projects - Documents\Projects 22.23\P2231 School Road Forbes - TIA\02 Doing\02.00 Data Analysis\Modelling\School Road Forbes V01.sip9